Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Plain Language Summary</td>
<td>2</td>
</tr>
<tr>
<td>Summary of Findings for the Main Comparison</td>
<td>2</td>
</tr>
<tr>
<td>Background</td>
<td>5</td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1</td>
<td>7</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2</td>
<td>9</td>
</tr>
<tr>
<td>Authors' Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Characteristics of Studies</td>
<td>13</td>
</tr>
<tr>
<td>Data and Analyses</td>
<td>19</td>
</tr>
<tr>
<td>Analysis 1.1. Comparison 1 Treatment versus No Treatment, Outcome 1 Mortality</td>
<td>19</td>
</tr>
<tr>
<td>Analysis 1.2. Comparison 1 Treatment versus No Treatment, Outcome 2 Stroke</td>
<td>20</td>
</tr>
<tr>
<td>Analysis 1.3. Comparison 1 Treatment versus No Treatment, Outcome 3 Coronary Heart Disease</td>
<td>20</td>
</tr>
<tr>
<td>Analysis 1.4. Comparison 1 Treatment versus No Treatment, Outcome 4 Total CV events</td>
<td>21</td>
</tr>
<tr>
<td>Analysis 1.5. Comparison 1 Treatment versus No Treatment, Outcome 5 Withdrawals due to adverse effects</td>
<td>22</td>
</tr>
<tr>
<td>Additional Tables</td>
<td>22</td>
</tr>
<tr>
<td>Appendices</td>
<td>22</td>
</tr>
<tr>
<td>Feedback</td>
<td>27</td>
</tr>
<tr>
<td>What's New</td>
<td>29</td>
</tr>
<tr>
<td>History</td>
<td>29</td>
</tr>
<tr>
<td>Contributions of Authors</td>
<td>29</td>
</tr>
<tr>
<td>Declarations of Interest</td>
<td>30</td>
</tr>
<tr>
<td>Sources of Support</td>
<td>30</td>
</tr>
<tr>
<td>Index Terms</td>
<td>30</td>
</tr>
</tbody>
</table>
Pharmacotherapy for mild hypertension

Diana Diao, James M Wright, David K Cundiff, Francois Gueyffier

1Faculty of Medicine, University of British Columbia, Vancouver, Canada. 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada. 3Internal Medicine, LA County+USC Med Center (Retired), Long Beach, CA, USA. 4UMR5558, CNRS et Université Claude Bernard - Service de Pharmacologie Clinique et Essais Thérapeutiques, Hopital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France

Contact address: Diana Diao, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. dianadiao@gmail.com

ABSTRACT

Background

People with no previous cardiovascular events or cardiovascular disease represent a primary prevention population. The benefits and harms of treating mild hypertension in primary prevention patients are not known at present. This review examines the existing randomised controlled trial (RCT) evidence.

Objectives

Primary objective: To quantify the effects of antihypertensive drug therapy on mortality and morbidity in adults with mild hypertension (systolic blood pressure (BP) 140-159 mmHg and/or diastolic BP 90-99 mmHg) and without cardiovascular disease.

Search methods

We searched CENTRAL (2011, Issue 1), MEDLINE (1948 to May 2011), EMBASE (1980 to May 2011) and reference lists of articles. The Cochrane Database of Systematic Reviews and the Database of Abstracts of Reviews of Effectiveness (DARE) were searched for previous reviews and meta-analyses of anti-hypertensive drug treatment compared to placebo or no treatment trials up until the end of 2011.

Selection criteria

RCTs of at least 1 year duration.

Data collection and analysis

The outcomes assessed were mortality, stroke, coronary heart disease (CHD), total cardiovascular events (CVS), and withdrawals due to adverse effects.

Main results

Of 11 RCTs identified 4 were included in this review, with 8,912 participants. Treatment for 4 to 5 years with antihypertensive drugs as compared to placebo did not reduce total mortality (RR 0.85, 95% CI 0.63, 1.15). In 7,080 participants treatment with antihypertensive drugs as compared to placebo did not reduce coronary heart disease (RR 1.12, 95% CI 0.80, 1.57), stroke (RR 0.51, 95% CI 0.24, 1.08), or total cardiovascular events (RR 0.97, 95% CI 0.72, 1.32). Withdrawals due to adverse effects were increased by drug therapy (RR 4.80, 95%CI 4.14, 5.57), Absolute risk increase (ARI) 9%.
Authors’ conclusions

Antihypertensive drugs used in the treatment of adults (primary prevention) with mild hypertension (systolic BP 140-159 mmHg and/or diastolic BP 90-99 mmHg) have not been shown to reduce mortality or morbidity in RCTs. Treatment caused 9% of patients to discontinue treatment due to adverse effects. More RCTs are needed in this prevalent population to know whether the benefits of treatment exceed the harms.

PLAIN LANGUAGE SUMMARY

Benefits of antihypertensive drugs for mild hypertension are unclear

Individuals with mildly elevated blood pressures, but no previous cardiovascular events, make up the majority of those considered for and receiving antihypertensive therapy. The decision to treat this population has important consequences for both the patients (e.g. adverse drug effects, lifetime of drug therapy, cost of treatment, etc.) and any third party payer (e.g. high cost of drugs, physician services, laboratory tests, etc.). In this review, existing evidence comparing the health outcomes between treated and untreated individuals are summarized. Available data from the limited number of available trials and participants showed no difference between treated and untreated individuals in heart attack, stroke, and death. About 9% of patients treated with drugs discontinued treatment due to adverse effects. Therefore, the benefits and harms of antihypertensive drug therapy in this population need to be investigated by further research.
Antihypertensive drug therapy compared with placebo for mild hypertension

Patient or population: Adults with mild hypertension and no cardiovascular disease
Settings: ambulatory
Intervention: Stepped care antihypertensive drug therapy
Comparison: Placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustarative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality 4 to 5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk population</td>
<td></td>
<td></td>
<td>RR 0.85 (0.63 to 1.15)</td>
<td>8912 (4)</td>
<td>⊕⃝⃝⃝ very low</td>
</tr>
<tr>
<td>15 per 1000</td>
<td>13 per 1000</td>
<td>9 to 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 per 1000</td>
<td>26 per 1000</td>
<td>18 to 34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CV events 5 years</td>
<td></td>
<td></td>
<td>RR 0.97 (0.72 to 1.32)</td>
<td>7080 (3)</td>
<td>⊕⃝⃝⃝ very low</td>
</tr>
<tr>
<td>Low risk population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 per 1000</td>
<td>15 per 1000</td>
<td>11 to 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 per 1000</td>
<td>29 per 1000</td>
<td>22 to 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Withdrawals due to adverse effects

<table>
<thead>
<tr>
<th>5 years</th>
<th>Low risk population</th>
<th>High risk population</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR 4.80 (4.14 to 5.57)</td>
<td>15 per 1000</td>
<td>30 per 1000</td>
</tr>
<tr>
<td>RR (17,354)</td>
<td>72 per 1000</td>
<td>144 per 1000</td>
</tr>
<tr>
<td>(62 to 84)</td>
<td></td>
<td>(124 to 168)</td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Withdrawals due to adverse effects are increased. It was down-graded to moderate as it was not limited to a primary prevention population with mild hypertension.

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

The median control group risk was derived from the event rate in the control group i.e. 20 per 1000 mortality, 24 per 1000 total CV events and 23 per 1000 withdrawals due to adverse effects.
BACKGROUND

Previous meta-analyses have concluded that cardiovascular events and overall mortality are decreased with antihypertensive drug therapy as compared to placebo or no treatment (Collins 1990, Gueyffier 1996, Psaty 1997, Wright 1999, Quan 2000, Psaty 2003, Wright 2009). These meta-analyses have combined subjects with mild elevations of blood pressure (stage 1), 140-159/90-99 mmHg, and moderate to severe elevations of blood pressure (>160/100 mmHg). These meta-analyses have also combined patients who have had a previous cardiovascular event (secondary prevention) with subjects who have not had a cardiovascular event (primary prevention). It is commonly assumed that the treatment effect expressed as relative risk is the same for primary prevention and secondary prevention populations; however, this is not proven. Furthermore, it is expected that the absolute risk reduction would be larger in secondary prevention populations than in primary prevention populations.

At the present time, individuals with mild elevations of blood pressure and no cardiovascular disease (primary prevention) are commonly treated with antihypertensive drugs despite there being no direct evidence supporting this practice. Furthermore this represents about half of the people presently being treated with antihypertensive drugs since the proportion of patients with mild elevations in blood pressure is about the same as the proportion with moderate to severe elevations in blood pressure (Marchant 2011). Therefore it is evident that there is a need to determine whether there is a proven reduction in mortality and morbidity with antihypertensive treatment in this patient group and if so the magnitude of that reduction. An attempt to do this by limiting to trials where patients were categorized as mild hypertension has been done (Therapeutics Initiative 2007), however in that analysis the average blood pressure at baseline was 160/98 mmHg, making it clear that even in that attempt about half of the individuals had moderate elevations of blood pressure at baseline. In that analysis antihypertensive treatment reduced total cardiovascular events, but not mortality. However, the findings of that analysis cannot be assumed to be extrapolated to the patients (about half of the total) that had mild elevations of blood pressure at baseline. The objective of this review was to assess the mortality and morbidity outcomes in randomized controlled trials using individual patient data whenever possible and limit the analysis to a primary prevention population with mild elevations of blood pressure at baseline.

OBJECTIVES

1. To quantify the effects of antihypertensive drug therapy as compared to no treatment on mortality and morbidity in healthy adults with mild elevations of blood pressure (systolic BP 140-159 mmHg and/or diastolic BP 90-99 mmHg).

2. To quantify withdrawals due to adverse drug effects for antihypertensive drug therapy in healthy adults with mild hypertension.

METHODS

Criteria for considering studies for this review

Types of studies
Randomised controlled trials of at least 1 year duration.

Types of participants
A primary prevention population of men and non-pregnant women, greater than 18 years of age with mild hypertension defined as a systolic blood pressure of 140-159 mmHg or diastolic blood pressure 90-99 mmHg and no evidence of cardiovascular disease at baseline: specifically defined as no myocardial infarction (MI), angina pectoris, coronary bypass surgery, coronary angioplasty, stroke, transient ischaemic attack, carotid endarterectomy, surgery for peripheral vascular disease, intermittent claudication, or renal failure (creatinine > 1.5 times the upper limit of normal). More than 80% of patients in a trial had to have mild hypertension as defined above for the trial to be included unless individual patient data was available allowing specific inclusion of this population as defined.

Types of interventions
Treatment with an antihypertensive drug either as monotherapy or with the addition of other drugs in a stepped care approach. Control: placebo or no antihypertensive treatment.

Types of outcome measures

Primary outcomes
Total mortality
Total cardiovascular events (total stroke, total MI and total congestive heart failure CHF)

Secondary outcomes
Total stroke (fatal and nonfatal strokes)
Total coronary heart disease (fatal and non-fatal myocardial infarction, sudden death)
Withdrawals due to adverse drug effects

Search methods for identification of studies
The Database of Abstracts of Reviews of Effectiveness (DARE) and the Cochrane Database of Systematic Reviews were searched to the end of 2011 for related reviews and meta-analyses of antihypertensive drug treatment compared to placebo or no treatment.
trials. Reports of relevant trials referred to in these reviews were obtained.
The following electronic databases were searched for primary studies: CENTRAL (2011, Issue 1), MEDLINE (1948 to May 2011), EMBASE (1980 to May 2011) and reference lists of articles. Electronic databases were searched using a strategy combining the Cochrane Highly Sensitive Search Strategy for identifying randomized trials in MEDLINE: sensitivity-maximizing version (2008 revision) with selected MeSH terms and free text terms relating to hypertension. No language restrictions were used. The MEDLINE search strategy (Appendix 1) was translated into EMBASE (Appendix 2), and CENTRAL (Appendix 3) using the appropriate controlled vocabulary as applicable.

Other sources:
a) Reference lists of all papers and relevant reviews identified
b) Authors of relevant papers were contacted regarding any further published or unpublished work
c) Authors of trials reporting incomplete information were contacted to provide the missing information

Data collection and analysis
All abstracts of trials identified by electronic searching or bibliographic scanning were screened. Those studies which appeared to meet the predetermined inclusion criteria stated above were selected on the basis of full text screening. When some trials also included subjects different than those of interest e.g., secondary prevention, stage 2 hypertension, we attempted to get the data on the subjects with mild hypertension as defined in this review. Such information was available for a large number of subjects in the INDANA database primarily from the Australian trial (ANBP) in mild hypertension and the MRC trial in mild hypertension. Despite all efforts individual subject data were not available for the Oslo study, the USPHSHC study, and the VA-NHLBI study. Data abstraction was undertaken by 2 independent reviewers who collected information on the following characteristics for each trial: type and dose of antihypertensive drugs used; other interventions used; patient characteristics, including co-morbid conditions; morbidity and mortality outcomes; and length of trial follow-up. Risk of bias was also assessed independently by 2 reviewers using the risk of bias tool and the following criteria: sequence generation, allocation concealment, blinding. Incomplete outcome data, selective reporting or other biases. Disagreements between independent reviewers arising in any of the stages above were resolved by a third reviewer (JMW).

Using the Cochrane software (RevMan) a quantitative analysis was carried out based on the availability of outcome data in the defined population. Individual patient data from 3 trials (ANBP; MRC; SHEP) and all data from 1 trial (VA-NHLBI) were pooled. Meta-analysis was performed using the Mantel-Haenszel statistical method and a fixed effects model. The risk ratio of each outcome comparing treatment versus no treatment or placebo was calculated.

RESULTS
Description of studies
See: Characteristics of included studies; Characteristics of excluded studies.
We retrieved 11 studies where antihypertensive therapy was administered for primary prevention in subjects with mild hypertension, published between 1966 and 2005 (see Figure 1). We excluded 2 trials because they had 2 or fewer subjects who met the criteria outlined in this review (MRC2, COOPE) and 3 trials because they did not have a placebo or no-treatment study group (HDFP, MRFIT, FEVER 2005). Despite considerable effort we were unable to obtain individual subject data for the Oslo, USPHSHC, and VA-NHLBI studies (2,186 patients). Based on the baseline blood pressure and standard deviation, we established that more than 20% of the patients in the Oslo Study and the USPHSHC study had moderately elevated blood pressure. Therefore these trials were excluded as they could not be expected to reflect the effects in a primary prevention population with mild hypertension. In the VA-NHLBI trial, less than 20% of subjects had moderately elevated blood pressure so we included this trial (1,012 patients). Individual subject data was obtained for ANBP, MRC, and SHEP trials and only those subjects who met the above stated criteria at baseline were included in this review (7,900 patients). The characteristics of these 4 included trials (8912 participants) in this review are summarized in the table Characteristics of included studies.
Figure 1. Study flow diagram.

16,325 records identified through database searching

No additional records identified through other sources

7,781 records after duplicates removed

7,781 records screened

7,709 records excluded

21 full-text articles for 7 studies excluded, with reasons

72 full-text articles assessed for eligibility

No studies included in qualitative synthesis

4 studies (51 full text articles) included in quantitative synthesis (meta-analysis)
Risk of bias in included studies
Risk of bias from 5 domains was assessed for each of the included studies (see Risk of bias in included studies).

Effects of interventions
See: Summary of findings for the main comparison
For the 8912 participants included in this review, treatment with antihypertensive drugs as compared to no treatment did not reduce total mortality (RR 0.85, 95% CI 0.63, 1.15). Furthermore, antihypertensive treatment did not significantly reduce total stroke (RR 0.51, 95% CI 0.24, 1.08), total coronary heart disease (RR 1.12, 95% CI 0.80, 1.57) or total cardiovascular events (RR 0.97, 95% CI 0.72, 1.32) (see Data and analyses).
Withdrawals due to adverse effects (WDAEs) was only available from all patients in the MRC trials and not from the subgroup of patients with mild hypertension. Assuming that withdrawals due to adverse effects would be similar in the participants with mild hypertension and those with moderate to severe hypertension, we have calculated this value for the whole trial. This showed an increase in WDAEs with antihypertensive treatment RR 4.80 [4.14, 5.17], ARR 8.9%. The VA-NHLBI trial reported any adverse symptom 1642/508 in the treatment group and 920/504 in the no treatment group. Chemical abnormalities such as hypokalaemia were also increased in the treatment group, 216 versus the control group, 15.

DISCUSSION
Summary of main results
This review demonstrates that antihypertensive drugs used in the treatment of patients without a previous cardiovascular event (primary prevention) with mild hypertension (systolic BP 140-159 mmHg and / or diastolic BP 90-99 mmHg) have not been proven to significantly reduce any outcome including total mortality, total cardiovascular events, coronary heart disease, or stroke. This review provides data on >8,000 people followed for 5 years and suggests little or no reduction in total cardiovascular events, RR 0.97 [0.72, 1.32] (see Summary of findings for the main comparison). The review also shows a non-significant reduction in stroke, RR 0.51 [0.24, 1.08] and mortality 0.85 [0.63, 1.15] consistent with there being a real benefit of treatment, but that it wasn’t demonstrable due to the paucity of events and people. Thus it remains possible, but highly unlikely, that there is an overall significant benefit of treating this group of patients with currently used medications. However, even if the assumption is made, as is commonly done, that the relative benefits for a primary prevention population with mild hypertension are the same as for patients with moderate to severe hypertension, mortality RR 0.9 and total CV events RR 0.7 from the review of first-line treatments of hypertension (Wright 2009) then the absolute benefits would be very small. We have made this estimate from the placebo group in the largest trial in this review (MRC). The estimated absolute risk reduction in this best case scenario is 0.25% for mortality and 0.78% for total cardiovascular events over a 5 year period. This means that 400 people would have to be treated for 5 years to prevent 1 death and 128 people would have to be treated for 5 years to prevent 1 cardiovascular event. It is likely that many such patients given this information would choose non drug treatments for hypertension (e.g. diet, exercise, stress management, etc.) rather than drug therapy. They would be even less likely to choose drug treatment when they were told that these estimated benefits are a best case scenario and uncertain based on the best available evidence at this time from this review. Furthermore they must also be told that they have a 9% chance of having an adverse effect that would require them to withdraw from therapy. Withdrawals may not be that high in practice today as lower doses of thiazides and beta-blockers are used today than was used in the MRC trial.

Overall completeness and applicability of evidence
The findings of this review are limited by the inability to get individual patient data from all the trials with patients in this subgroup. The number of patients in this review in comparison to the total number of patients in the trials in shown in Table 1. However, even if we had all the data there is a good chance the findings would remain uncertain and inconclusive. This is due to the fact that patients with mild hypertension have a relatively low risk of experiencing an adverse cardiovascular event in keeping with the low number of events that were seen in this review. A 5 year study with 15,000 patients would be required to demonstrate a reduction of 30% in total cardiovascular events and of 45,000 patients to demonstrate a mortality reduction of 10%. Planned subgroup analyses were not conducted due to the paucity of outcomes in the overall data.

Quality of the evidence
The trials contributing to this review were funded by granting agencies. Nevertheless the risk of bias assessment suggests that there is a moderate to high risk of bias (Figure 2) making the magnitude of the non-significant relative risk reduction more likely to be an overestimate than an underestimate. In particular the Australian
trial (ANBP) had a high risk of ascertainment bias. As a result this trial only contributed to mortality data. The RR estimate of effect on mortality with treatment was unaffected by deselecting this trial. Another limitation is that most of the outcome data comes from the MRC trial, which we judged to have a high risk of detection bias and attrition bias. Despite the lack of financial bias in this trial the investigators were more likely to be biased in favour of treatment than against, justifying why the non-significant benefits are likely to be an overestimate.

Figure 2. Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.
Potential biases in the review process

It is unlikely that any large unpublished negative trials have been missed. It is over 20 years now since it has been accepted by the medical community that patients with mild hypertension should be treated. Therefore it is highly unlikely that trials have been conducted in this population in the last 20 years. The inability to obtain individual patient data in all relevant trials could have biased the findings.

Agreements and disagreements with other studies or reviews

As far as we are aware there have been no previous systematic reviews conducted to answer this question. The findings of this review are however in disagreement with hypertension guideline recommendations in the US, Canada and Europe. These guideline groups have recommended treatment of all adults with a blood pressure > 140/90 mmHg. The European Guidelines specify that the recommendation for pharmacologic treatment in “mild uncomplicated hypertension” is based on the outcomes of these 5 trials (ANBP; MRC; FEVER 2005; HDFP; Oslo). They do note that the evidence in favour of this recommendation is scant because older trials of “mild hypertension” treated patients whose blood pressure could be higher than grade 1 hypertension or included secondary prevention patients (Mancia 2009). We have excluded the latter 3 RCTs, FEVER 2005, HDFP and Oslo, because they had >20% of patients with moderate or higher blood pressure and FEVER 2005 plus HDFP did not have an appropriate control group. The American Society of Hypertension guidelines refers to the European Guidelines to justify this treatment threshold recommendation. The Canadian guidelines are not explicit as to how they come to their recommendations.

Authors’ Conclusions

Implications for practice

Since a large proportion of people treated with antihypertensive therapy are individuals with no previous cardiovascular disease (primary prevention) and mild elevations of blood pressure, the findings of this review have important implications. Most physicians have been treating such patients with false confidence that it was based on RCT evidence. Based on the best available evidence at the present time, this review does not show any significant benefit of antihypertensive drug therapy in reducing mortality, heart attacks, strokes, or overall cardiovascular events. Furthermore drug treatment caused 9% of patients to withdraw due to adverse effects. It is likely that given this evidence many individuals with no cardiovascular disease and mild hypertension would choose non-drug treatments (diet, exercise, stress management, etc.) rather than drug therapy.

Implications for research

Evidence based treatment of mild hypertension represents a challenge to the medical and research community. Hypertension, the commonest clinical condition being treated today is being treated with an assumption that it has been established that the benefits of treatment outweigh the harms, when that is not in fact the case for people with no cardiovascular disease (primary prevention) and mild hypertension. In the absence of evidence, it is entirely ethical to conduct a large RCT in primary prevention patients with mild hypertension comparing antihypertensive therapy with placebo. At the present time equipoise exists between the treated and the placebo group. In such an RCT it would be possible to compare the relative and absolute benefits and harms in people at baseline in the higher range 150-159/95-99 mmHg and in the lower range 140-149/90-94 mmHg. By following such an approach we may finally properly define hypertension as “that BP above which the benefits of treatment outweigh the harms”.

Acknowledgements

We would like to thank Doug Salzwedel for helping with the search strategy used in this review.

References

References to studies included in this review

ANBP [published data only]

MRC. (published data only)
Miall WE, Brennan PJ, Mann AH. Medical research Council’s Treatment Trial for mild hypertension: an interim report. *Clinical Science and Molecular Medicine* 1976;51:563s–565s.

SHEP. (published data only)
Menard J, Day M, Chatellier G, Laragh JH. Some lessons from systolic hypertension in the elderly program (SHEP).
Pharmacotherapy for mild hypertension (Review)

Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

USPHS/WHO (published data only)

Additional references

Collins 1990

Gueyffier 1996

Mancia 2009

Marchant 2011

Psaty 1997

Psaty 2003

Quan 2000

Therapeutics Initiative 2007

Wright 1999

Wright 2009

Characteristics of included studies [ordered by study ID]

ANBP

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomised single-blind, comparing treatment with placebo. Trial conducted in Australia</td>
</tr>
<tr>
<td>Participants</td>
<td>Ambulatory young patients, with mean age 50 years, range (30-59 years). Australian (White) or European born, the former predominating. Male (63%). Baseline mean SBP/DBP was 157.4/100.4 mmHg. The inclusion criteria was SBP < 200 mmHg and DBP 90-110 mmHg. Patients were followed for 4 years</td>
</tr>
<tr>
<td>Interventions</td>
<td>Chlorothiazide 500mg once or twice daily, methyldopa, propranolol, or pindolol added as 2nd-order treatment, and hydralazine or clonidine added as 3rd-order treatment. Control: placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Mortality, CHD, stroke, other CV events, systolic BP and diastolic BP</td>
</tr>
<tr>
<td>Notes</td>
<td>Attrition bias for ANBPS trial: All components from the composite outcome were terminating events, without complementary mortality survey. All analyses regarding these separated components are subject to a censoring bias</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>“patients randomly allocated, with stratification by age and sex” Not enough detail to know how this was done</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Inadequate</td>
</tr>
<tr>
<td>Blinding (performance bias and detection bias)</td>
<td>High risk</td>
<td>Trial was single blind so investigators physicians caring for the patient were not blinded as to treatment allocation</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>All components from the composite outcome were terminating events, without complementary mortality survey. All analyses regarding these separated components are subject to a censoring bias</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Not specified in report.</td>
</tr>
</tbody>
</table>
MRC

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised single-blind comparing 2 treatments and placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Ambulatory patients, with mean age 52 years, range (35-64 years). Ethnicity not reported. Male (52%). Baseline mean SBP/DBP was 161.4/98.2 mmHg and pulse pressure was 63 mmHg. The inclusion criteria was SBP < 200 mmHg and DBP 90-109 mmHg. Patients were followed for 5 years</td>
</tr>
<tr>
<td>Interventions</td>
<td>Bendrofluazide 10 mg daily (71% mono), Propranolol 80-240 mg daily (78% mono), methyldopa added if required. Control: placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Mortality, stroke, CHD, systolic BP and diastolic BP</td>
</tr>
<tr>
<td>Notes</td>
<td>No CHF data</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>"Randomisation was in stratified blocks of eight within each sex, 10 year age group, and clinic." Sufficient detail provided to consider low risk</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Not described.</td>
</tr>
<tr>
<td>Blinding (performance bias and detection bias)</td>
<td>High risk</td>
<td>Trial was single blind. Investigators knew what treatment the patients were receiving</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Myocardial infarction and stroke were reasons for terminating the study follow-up, except for death flagging. This induces a censoring attrition bias, limited to the occurrence non-fatal events myocardial infarction or stroke. In the original paper: TERMINATION OF PARTICIPATION IN TRIAL. Events terminating a patient's participation were: stroke, whether fatal or non-fatal; coronary events, including sudden death thought to be due to a coronary cause, death known to be due to myocardial infarction, and non-fatal myocardial infarction; other cardiovascular events, including deaths due to hypertension (ICD 400-404) and to rupture or dissection of an aortic aneurysm; and death from any other cause. Clinic staff reported these events to the coordinating centre. The records of all patients who suffered non-fatal terminat-</td>
</tr>
</tbody>
</table>
ing events and of any others who lapsed from the trial, whatever the reason, were “flagged” at the Southport NHS central register to ensure notification of death.)

| Selective reporting (reporting bias) | Unclear risk | Not described in report |

SHEP

Methods
Randomised, double-blind, placebo controlled. Trial conducted in USA

Participants
Ambulatory patients, with mean age 72 years, range (> 60 years). 13.9% of patients were African-Americans. Male (43%). Baseline mean SBP/DBP was 170/77 mmHg and pulse pressure was 93 mmHg. The inclusion criteria was SBP 160-219 mmHg and DBP <90 mmHg. Patients were followed for 4.5 years

Interventions
Chlorthalidone 12.5-25 mg (69%), Step 2. atenolol 25-50 mg (23%) or reserpine 0.05-0.1 mg. Identical placebo

Outcomes
Mortality, stroke, CHD, CHF, systolic BP and diastolic BP

Notes
Total CVS verified remains same

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Screenees were randomly allocated by the coordinating center to one of two treatment groups. Randomization was stratified by clinical center and by antihypertensive medication status at initial contact.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Adequate</td>
</tr>
<tr>
<td>Blinding (performance bias and detection bias) All outcomes</td>
<td>Low risk</td>
<td>Blinding of patients and investigators was achieved.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>Patients with non-fatal outcomes were not censored.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Not specified in report.</td>
</tr>
</tbody>
</table>
VA-NHLBI

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised, double-blind, placebo controlled. Trial conducted in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Ambulatory patients, with mean age 37.5 years, range (21-50 years). 25% patients were African-Americans. Male (100%). Baseline mean DBP was 93.3 mmHg. The inclusion criteria was DBP 85-105 mmHg. Patients were followed for 2 years. Target < 85 mmHg</td>
</tr>
<tr>
<td>Interventions</td>
<td>CHTD 50 mg, 100 mg, (53% CHTD alone). Reserpine 0.25 mg. Control: placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Mortality, stroke, CHD, CHF, and diastolic BP</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Use of randomization number and subjects were "randomized in double-blind fashion into active drug therapy and placebo groups"</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Adequate</td>
</tr>
<tr>
<td>Blinding (performance bias and detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of investigators and patients was achieved.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Not specified</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOPE</td>
<td>Only 2 subjects met criteria defined in this review.</td>
</tr>
<tr>
<td>FEVER 2005</td>
<td>Not a placebo or no treatment controlled trial.</td>
</tr>
<tr>
<td>HDFP</td>
<td>No untreated control group.</td>
</tr>
<tr>
<td>MRC2</td>
<td>Only 2 subjects met criteria defined in this review.</td>
</tr>
<tr>
<td>MRFIT</td>
<td>No untreated / placebo control group.</td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oslo</td>
<td>Approximately half of the subjects had moderately elevated BP and data was not available for the subjects with mild elevation of BP separately</td>
</tr>
<tr>
<td>USPHSHC</td>
<td>Approximately half of the subjects had moderately elevated BP and data was not available for the subjects with mild elevation of BP separately</td>
</tr>
</tbody>
</table>
Data and Analyses

Comparison 1. Treatment versus No Treatment

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mortality</td>
<td>4</td>
<td>8912</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.85 [0.63, 1.15]</td>
</tr>
<tr>
<td>2 Stroke</td>
<td>3</td>
<td>7080</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.51 [0.24, 1.08]</td>
</tr>
<tr>
<td>3 Coronary Heart Disease</td>
<td>3</td>
<td>7080</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.12 [0.80, 1.57]</td>
</tr>
<tr>
<td>4 Total CV events</td>
<td>3</td>
<td>7080</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.72, 1.32]</td>
</tr>
<tr>
<td>5 Withdrawals due to adverse effects</td>
<td>1</td>
<td>17354</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>4.80 [4.14, 5.57]</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1 Treatment versus No Treatment, Outcome 1 Mortality.

Review: Pharmacotherapy for mild hypertension

Comparison: 1 Treatment versus No Treatment

Outcome: 1 Mortality

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment n/N</th>
<th>No Treatment n/N</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANBP</td>
<td>17/958</td>
<td>13/874</td>
<td>1.19 [0.58, 2.44]</td>
</tr>
<tr>
<td>MRC</td>
<td>58/3012</td>
<td>77/3049</td>
<td>0.76 [0.54, 1.07]</td>
</tr>
<tr>
<td>SHEP</td>
<td>0/3</td>
<td>0/4</td>
<td>0.0 [0.0, 0.0]</td>
</tr>
<tr>
<td>VA-NHLBI</td>
<td>2/508</td>
<td>0/504</td>
<td>4.96 [0.24, 103.07]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>4481</td>
<td>4431</td>
<td>0.85 [0.63, 1.15]</td>
</tr>
</tbody>
</table>

Total events: 77 (Treatment), 90 (No Treatment)

Heterogeneity: \(\chi^2 = 2.56, \text{df} = 2 \) (\(P = 0.28 \)); \(\hat{I}^2 = 22\% \)

Test for overall effect: \(Z = 1.06 \) (\(P = 0.29 \))

Test for subgroup differences: Not applicable
Analysis 1.2. Comparison 1 Treatment versus No Treatment, Outcome 2 Stroke.

Review: Pharmacotherapy for mild hypertension

Comparison: 1 Treatment versus No Treatment

Outcome: 2 Stroke

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment n/N</th>
<th>No Treatment n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC</td>
<td>10/3012</td>
<td>20/3049</td>
<td>0.51 [0.24, 1.08]</td>
<td></td>
</tr>
<tr>
<td>SHEP</td>
<td>0/3</td>
<td>0/4</td>
<td>0.0 [0.0, 0.0]</td>
<td></td>
</tr>
<tr>
<td>VA-NHLBI</td>
<td>0/508</td>
<td>0/504</td>
<td>0.0 [0.0, 0.0]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>3523</td>
<td>3557</td>
<td>0.51 [0.24, 1.08]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 10 (Treatment), 20 (No Treatment)

Heterogeneity: Chi² = 0.0, df = 0 (P = 1.00); I² =0.0%

Test for overall effect: Z = 1.76 (P = 0.078)

Test for subgroup differences: Not applicable

Analysis 1.3. Comparison 1 Treatment versus No Treatment, Outcome 3 Coronary Heart Disease.

Review: Pharmacotherapy for mild hypertension

Comparison: 1 Treatment versus No Treatment

Outcome: 3 Coronary Heart Disease

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment n/N</th>
<th>No Treatment n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC</td>
<td>63/3012</td>
<td>59/3049</td>
<td>1.08 [0.76, 1.54]</td>
<td></td>
</tr>
<tr>
<td>SHEP</td>
<td>0/3</td>
<td>0/4</td>
<td>0.0 [0.0, 0.0]</td>
<td></td>
</tr>
<tr>
<td>VA-NHLBI</td>
<td>8/508</td>
<td>5/504</td>
<td>1.59 [0.52, 4.82]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>3523</td>
<td>3557</td>
<td>1.12 [0.80, 1.57]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 71 (Treatment), 64 (No Treatment)

Heterogeneity: Chi² = 0.42, df = 1 (P = 0.52); I² =0.0%

Test for overall effect: Z = 0.67 (P = 0.50)

Test for subgroup differences: Not applicable
Analysis 1.4. Comparison 1 Treatment versus No Treatment, Outcome 4 Total CV events.

Review: Pharmacotherapy for mild hypertension
Comparison: 1 Treatment versus No Treatment
Outcome: 4 Total CV events

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment</th>
<th>No Treatment</th>
<th>Risk Ratio M-H,Fixed(95% CI)</th>
<th>Risk Ratio M-H,Fixed(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC</td>
<td>73/3012</td>
<td>79/3049</td>
<td>0.94 [0.68, 1.28]</td>
<td></td>
</tr>
<tr>
<td>SHEP</td>
<td>0/3</td>
<td>0/4</td>
<td>0.00 [0.00, 0.00]</td>
<td></td>
</tr>
<tr>
<td>VA-NHLBI</td>
<td>8/508</td>
<td>5/504</td>
<td>1.59 [0.52, 4.82]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>3523</td>
<td>3557</td>
<td>0.97 [0.72, 1.32]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 81 (Treatment), 84 (No Treatment)
Heterogeneity: $\chi^2 = 0.81$, df = 1 ($P = 0.37$); $I^2 = 0.0\%$
Test for overall effect: $Z = 0.17$ ($P = 0.87$)
Test for subgroup differences: Not applicable
Analysis 1.5. Comparison 1 Treatment versus No Treatment, Outcome 5 Withdrawals due to adverse effects.

Review: Pharmacotherapy for mild hypertension
Comparison: Treatment versus No Treatment
Outcome: 5 Withdrawals due to adverse effects

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Treatment</th>
<th>Placebo</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H, Fixed 95% CI</td>
<td></td>
<td>M-H, Fixed 95% CI</td>
</tr>
<tr>
<td>MRC</td>
<td>980/8700</td>
<td>203/8654</td>
<td>4.80 [4.14, 5.57]</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>8700</td>
<td>8654</td>
<td></td>
<td></td>
<td>4.80 [4.14, 5.57]</td>
</tr>
</tbody>
</table>

Total events: 980 (Treatment), 203 (No Treatment)
Heterogeneity: not applicable
Test for overall effect: Z = 20.75 (P < 0.00001)
Test for subgroup differences: Not applicable

ADDITIONAL TABLES

Table 1. Patient numbers in this review versus total numbers in the trials

<table>
<thead>
<tr>
<th>Trials</th>
<th>This review</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Placebo</td>
</tr>
<tr>
<td>MRC</td>
<td>3012</td>
<td>3049</td>
</tr>
<tr>
<td>ANBP</td>
<td>958</td>
<td>874</td>
</tr>
<tr>
<td>SHEP</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>VA-NHLBI</td>
<td>508</td>
<td>504</td>
</tr>
<tr>
<td>Total</td>
<td>4481</td>
<td>4431</td>
</tr>
</tbody>
</table>
Appendix 1. MEDLINE search strategy

Database: Ovid MEDLINE(R) 1948 to Present with Daily Update
Search Date: 18 May 2011

1 exp thiazides/
2 exp sodium potassium chloride symporter inhibitors/
3 (loop or ceiling) adj diuretic?.tw.
4 (amiloride or benzothiadiazine or bendroflumethiazide or bumetanide or chlorothiazide or cyclosporin or furosemide or hydrochlorothiazide or hydroflumethiazide or methyclothiazide or metolazone or polythiazide or trichlormethiazide or veratride or thi-aziide!).tw.
5 (chlorthalidone or chlortalidone or phthalumidine or chlorphthalidolone or oxodoline or thalitone or hygroton or indapamide or metindamide).tw.
6 or/1-5 [THZ]
7 exp angiotensin-converting enzyme inhibitors/
8 ((angiotensin or dipeptidyl) adj3 (convert$ or enzyme or inhibit$ or recept$ or block$)).tw.
9 ((ace or renin) adj3 inhibit$).tw.
10 acei.tw.
11 exp enalapril/
12 (alacepril or altiopril or benazepril or captopril or ceronapril or cilazapril or delapril or enalapril or fosinopril or idapril or imidapril or lisinopril or moexipril or movetripil or pentopril or perindopril or quinapril or ramipril or spirapril or temocapril or trandolapril or zofenopril or aliskiren or enalikre or remikiren).tw.
13 or/7-12 [ACEIs]
14 exp losartan/
15 (KT3-671 or candesartan or eprosartan or irbesartan or losartan or olmesartan or telmisartan or valsartan).tw.
16 or/14-15 [ARBS]
17 exp calcium channel blockers/
18 (calcium channel block$ or amlodipine or amrinone or bencyclane or bepridil or cinnarizine or diltiazem or felodipine or fendiline or flunarizine or gallopamil or isradipine or lidoflazine or magnesium sulfate or mibefradil or nicardipine or niefedipine or nimodipine or nisoldipine or nitrendipine or perhexiline or prenylamine or verapamil or omega-agatoxin iv a or omega-conotoxin gvia or omega-conotoxins).tw.
19 (calcium adj2 (inhibit$ or antagonist? or block$)).tw.
20 or/17-19 [CCBs]
21 (methyl dopa or alphamethyldopa or amodopa or dopamet or dopecyr or dopegit or dopegit or emdopa or hyperpax or hyperpaxa or methylpropionic acid or dopecyr or dopecyr or meldonia or meldoniate or meldoniat...
bupranolol or butofilolol or butoxamine or carazolol or carteolol or carvedilol or celiprolol or cetamolol or chlortalidone cloranolol or
cyaniodopindolol or cyanopindolol or deacetylmethylprenolol or diacetol or dihydroalprenolol or dilevalol or epanolol or esmolol or
exaprolol or falintolol or flestolol or flusoxolol or hydroxybenzylpinodolol or hydroxycarteolol or hydroxymetoprolol or idenolol or
iodocyanoanopindolol or iodopindolol or ipropranolol or isoxaprolol or labetalol or landiolol or levobunolol or levomoprolol or medroxalol
or mepindolol or methyliopropranolol or metipranolol or metoprolol or moprolol or nadolol or oxprenolol or penbutolol or pindolol or
nadolol or nebivolol or nefenatol or nipradilol or oxprenolol or pafenolol or pamatolol or penbutolol or pindolol or practolol or
primidolol or prizidilol or procinolol or prontalol or propranolol or proproneolol or ridazolol or salcardolol or soquinolol or sotalol or
spirexolol or talinolol or tertatolol or tienoxolol or tilsolol or timolol or tolanmolol or toliprolol or tribendolol or xibenolol).tw.
30 (beta adj2 (antagonist? or receptor? or adrenergic? block$)).tw.
31 or/27-30 [BBs]
32 exp adrenergic alpha antagonists/
33 (alfuzosin or bunazosin or doxazosin or metazosin or neldazosin or prazosin or silodosin or tamsulosin or terazosin or tiodazosin or
trimazosin).tw.
34 (andrenergic adv2 (alpha or antagonist?)).tw.
35 ((andrenergic or alpha or receptor?) adj2 block$).tw.
36 or/32-35 [ABs]
37 hypertension/
38 hypertens$.tw.
39 ((high or elevat$ or rais$) adj2 blood pressure).tw.
40 or/37-39
41 randomized controlled trial.pr.
42 controlled clinical trial.pr.
43 randomized.ab.
44 placebo.ab.
45 dt.fs.
46 randomly.ab.
47 trial.ab.
48 groups.ab.
49 or/41-48
50 animals/ not (humans/ and animals/)
51 Pregnancy/ or Hypertension, Pregnancy-Induced/ or Pregnancy Complications, Cardiovascular/ or exp Ocular Hypertension/
52 (pregnancy-induced or ocular hypertens$ or preeclampsia or pre-eclampsia).ti.
53 49 not (50 or 51 or 52)
54 (6 or 13 or 16 or 20 or 26 or 31 or 36) and 40 and 53

Appendix 2. EMBASE search strategy

Database: Embase <1980 to 2011 Week 19>
Search Date: 18 May 2011

1 exp thiazide diuretic agent/
2 exp loop diuretic agent/
3 ((loop or ceiling) adj diuretic?).tw.
4 (amiloride or benzothiadiazine or bendroflumethiazide or bumetanide or chlorothiazide or cyclopenthiazide or furosemide or hy-
drochlorothiazide or hydroflumethiazide or methyclothiazide or metolazone or polythiazide or trichlormethiazide or veratide or thi-
azide?).tw.
5 (chlorthalidone or chlortalidone or phthalamudine or chlorphthtalidolone or oxodoline or thalitone or hygroton or indapamide or
metindamide).tw.
6 or/1-5 [THZ]
7 exp dipeptidyl carboxypeptidase inhibitor/
8 (angiotensin or dipeptidyl) adj3 (convert$ or enzyme or inhibit$ or receptor$ or block$).tw.
9 ((ace or renin) adj3 inhibit$).tw.
10 acei.tw.
enalapril/ (alacepril or altiopril or benazepril or captopril or ceronapril or cilazapril or delapril or enalapril or fosinopril or idapril or imidapril or lisinopril or moexipril or movetipril or pentopril or perindopril or quinapril or ramipril or spirapril or temocapril or trandolapril or zofenopril or ailskire or enalkire or remikiren).tw.

exp losartan/ (KT3-671 or candesartan or eprosartan or irbesartan or losartan or olmesartan or telmisartan or valsartan).tw.

exp calcium channel blocking agent/ (calcium channel block$ or amlodipine or amrinone or bencyclane or bepridil or cinnarizine or conotoxins or diltiazem or felodipine or fendiline or flunarizine or gallopamil or isradipine or lidoflazine or magnesium sulfate or mibefradil or nicardipine or nifedipine or nimodipine or nisoldipine or nitrendipine or perhexiline or prenylamine or verapamil or omega-agatoxin ivb or omega-conotoxin gvia or omega-conotoxin gla).tw.

calcium adj2 (inhibit$ or antagonist? or block$).tw.

exp beta adrenergic receptor blocking agent/ (acebutolol or adimolol or afurolol or alprenolol or amosulalol or arotinolol or atenolol or befunolol or betaxolol or bевантолol or bisoprolol or bozindolol or bornaprolol or brefonolol or bucindolol or bucumolol or bufetolol or bufenalol or bunolol or bunoral or bupropional or butofozin or butoxamine or carazolol or caretecol or carvedilol or celiprolol or cetamolol or chlortalidone or clonazolol or cyanosidopindolol or cyanopindolol or deacetelymetipranolol or diacetolol or epanolol or esmolol or exparolol or falintolol or fletistolol or fluoxotolol or hydroxbenzyliplinodiol or hydroxyetoprol or indenalol or iodocyanopindolol or iodopyindolol or iprocrisol or isoaxatol or labetalol or levobunolol or levomodroxol or meprindolol or methylhthioproparanol or metipranolol or metoprolol or mofpranol or nadolol or oxprenolol or penbutolol or pipindolol or nadolol or nifedipol or nifradilol or oxprenolol or pafenolol or patenolol or penbutolol or pindolol or practolol or primidolol or prizidilol or pronisolol or pronetiolol or propranolol or proxodrolor or ridazolol or salcardol or sorinolol or sorinolol or spirendolol or talinolol or tennoxolol or tiolisolol or timolol or tolamolol or toliprolol or xibenolol).tw.

exp adrenergic beta antagonist?:tw.

(acebutolol or adimolol or afurolol or alprenolol or amosulalol or arotinolol or atenolol or befunolol or betaxolol or bевантолol or bisoprolol or bozindolol or bornaprolol or brefonolol or bucindolol or bucumolol or bufetolol or bufenalol or bunolol or bunoral or bupropional or butofozin or butoxamine or carazolol or caretecol or carvedilol or celiprolol or cetamolol or chlortalidone or clonazolol or cyanosidopindolol or cyanopindolol or deacetelymetipranolol or diacetolol or epanolol or esmolol or exparolol or falintolol or fletistolol or fluoxotolol or hydroxbenzyliplinodiol or hydroxyetoprol or indenalol or iodocyanopindolol or iodopyindolol or iprocrisol or isoaxatol or labetalol or levobunolol or levomodroxol or meprindolol or methylhthioproparanol or metipranolol or metoprolol or mofpranol or nadolol or oxprenolol or penbutolol or pipindolol or nadolol or nifedipol or nifradilol or oxprenolol or pafenolol or patenolol or penbutolol or pindolol or pracolol or primidolol or prizidilol or pronisolol or pronetiolol or propranolol or proxodrolor or ridazolol or salcardol or sorinolol or sorinolol or spirendolol or talinolol or tennoxolol or tiolisolol or timolol or tolamolol or toliprolol or xibenolol).tw.

betad2 (antagonist? or receptor? or adrenergic? block$)).tw.

exp alpha adrenergic receptor blocking agent/

exp hypertension/

hypertens$ or antihypertens$.tw.

((high or elevat$ or rais$) adj2 blood pressure).tw.

Pharmacotherapy for mild hypertension (Review)

Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Appendix 3. CENTRAL search strategy

Database: Cochrane Central Register of Controlled Trials (Wiley) 2011 Issue 1
Search Date: 18 May 2011

#1 MeSH descriptor Thiazides explode all trees
#2 MeSH descriptor Sodium Potassium Chloride Symporter Inhibitors explode all trees
#3 (loop or ceiling) next diuretic*:ti,ab,kw
#4 (amiloride or benzothiadiazine or bendroflumethiazide or bumetanide or chlorothiazide or cyclopenthiazide or furosemide or hydrochlorothiazide or hydroflumethiazide or methyclothiazide or metolazone or polythiazide or trichlormethiazide or veratide or thiazide*):ti,ab,kw
#5 (chlorthalidone or chlortalidone or phthalamudine or chlorphthalidolone or oxodoline or thalitone or hygroton or indapamide or metindamide):ti,ab,kw
#6 (#1 OR #2 OR #3 OR #4 OR #5)
#7 MeSH descriptor Angiotensin-Converting Enzyme Inhibitors explode all trees
#8 ((angiotensin or dipeptidyl) near/3 (convert* or enzyme or inhibit* or recept* or block*)):ti,ab,kw
#9 ((ace or renin) near/3 inhibit*):ti,ab,kw
#10 acei:ti,ab
#11 MeSH descriptor Enalapril explode all trees
#12 (alacepril or altiopril or benazepril or captopril or ceronapril or cilazapril or delapril or enalapril or fosinopril or idapril or imidapril or lisinopril or moexipril or movetipril or pentopril or perindopril or quinapril or ramipril or spirapril or temocapril or trandolapril or zofenopril or aliskiren or enalkire or remikiren):ti,ab,kw
#13 (#7 OR #8 OR #9 OR #10 OR #11 OR #12)
#14 MeSH descriptor Losartan explode all trees
#15 (KT3-671 or candesartan or eprosartan or irbesartan or losartan or olmesartan or telmisartan or valsartan):ti,ab,kw
#16 (#14 OR #15)
#17 MeSH descriptor Calcium Channel Blockers explode all trees
#18 (calcium channel block* or amlopidine or aminone or bencyclane or bepridil or cinnarizine or conotoxins or diltiazem or felodipine or fendiline or flunarizine or gallopamid or isradipine or lidoflazine or magnesium sulfate or mibefradil or nicardipine or nilidipine or nimodipine or nisoldipine or nitrendipine or prenylamine or verapamil or omega-agatoxin iv a or omega-conotoxin gvia or omega-conotoxins):ti,ab,kw
#19 calcium near/2 (inhibit* or antagonist* or block*):ti,ab,kw
#20 (#17 OR #18 OR #19)
#21 (methyldopa or alphamethyldopa or amodopa or dopamet or dopenyg or dopegit or dopegit or dopegyit or emdopa or hyperpax or hyperpaxa or methylpropionic acid or dopergit or meldopa or methylpate or medopa or medomet or sembrina or aldomet or aldometil or aldometil or
Feedback

Should mild hypertension be treated? The possible benefits of angiotensin receptor blockers, 12 September 2012

Summary

We read with interest the manuscript of Diao D et al about the possible benefits of treating mild hypertensive patients in primary prevention. (Diao 2012) In this study, 4 randomized clinical trials, with a total of 8,912 patients, were included for the analysis. After a follow-up of 4-5 years, antihypertensive treatment was not followed with a reduction of total mortality, coronary heart disease, stroke or total cardiovascular events. Even more, antihypertensive treatment was associated with an increased risk of withdrawals due to adverse effects.

Although the implications of this study are of great interest, the fact is it has important limitations that hamper its conclusions to be translated into clinical practice. Firstly, the relative small sample size, with less than 9,000 patients included. Indeed, not many studies have analyzed this population. By contrast, current outstanding clinical trials actually include a greater population to allow attaining clinically relevant conclusions (i.e. in LIFE, 9,193 patients were included (Dahlöf 2002), in ACCOMPLISH, 11,506 patients (Jamerson 2008). This is even more important taking into account that in these studies high risk hypertensive patients were included, with more expected outcomes. As cardiovascular risk lowers, more patients are required to really ascertain whether a treatment is effective or not. Moreover, follow up was limited to 4 to 5 years in the included studies. However, in general, hypertension-related organ damage needs time to establish and more time to develop cardiovascular complications. Moreover, this time is even longer in mild hypertension. Thus, to actually establish the real benefits of antihypertensive therapy in this population, longer follow-up is warranted or at least, intermediate endpoints, such as left ventricular hypertrophy or microalbuminuria, should be analyzed (Mancia 2009).

Finally, it is also important to analyze the antihypertensive therapy used in the studies included in this meta-analysis (ANBP: chlorothiazide, methyldopa, propranolol, or pindolol added as 2nd-order treatment, and hydralazine or clonidine added as 3rd-order treatment; control placebo; MRC: bendrofluazide, propranolol, methyldopa added if required; control placebo; SHEP: chlorthalidone, step 2 atenolol or reserpine; identical placebo; VA-NHLBI: chlorthalidone, reserpine; control placebo) (Diao D 2012). Many of these drugs are not currently being used. In fact, modern antihypertensive agents are more effective or better tolerated than those used in most of these studies.

On the other hand, beta blockers (present in all the analyzed studies) are commonly withdrawn due to side effects in a significant proportion of patients. This fact occurs even in secondary prevention (Gislason 2006). Medication adherence is important to assure the benefits of therapy during follow-up. In fact, when the efficacy of 2 drugs is similar, the agent with lesser rates of side effects should be chosen. For example, in the ONTARGET trial, although telmisartan and ramipril similarly reduced cardiovascular outcomes, when discontinuation of study medication was included in the analysis, a trend to lesser outcomes was observed with telmisartan (Barrios 2008). If using drugs with lower side effects is important in secondary prevention, this is even more relevant in primary prevention where patients do not have symptoms. With regard to first-line current antihypertensive drugs (diuretics, beta blockers, calcium channel blockers, angiotensin converting enzyme inhibitors and angiotensin receptor blockers), it seems that angiotensin receptor blockers could be the better tolerated agents.

Although specific and appropriate clinical trials are needed to ascertain the benefits of antihypertensive therapy in patients with mild hypertension, it should be currently recommended to reduce blood pressure values to established targets in patients with mild hypertension, but with those drugs better tolerated.

References

We certify that we have no affiliations with or involvement in any organization or entity with a financial interest in the subject matter of our feedback.

Reply
We thank Drs. Barrios and Escobar for their comments.
Regarding the number of RCT participants included in this systematic review (n=8,912), we agree that it would be good if there were more data, however, this review does represent all the participants and data that are available at this time. Thus at the present time we do not have proof that the benefits of drug treatment outweigh the harms for primary prevention patients with mild elevations in blood pressure, a group that represents half of the hypertensive population.
We agree with Barrios and Escobar's conclusions that "specific and appropriate clinical trials are needed to ascertain the benefits of antihypertensive therapy in patients with mild hypertension". However, we disagree with their conclusions that "it should be currently recommended to reduce blood pressure values to established targets in patients with mild hypertension, but with those drugs better tolerated". Widespread treatment in the absence of evidence is never a good approach. Patients who are offered drug treatment need to be told that drug treatment has not been proven to be beneficial.

Contributors
Vivencio Barrios <vbarriosa@medynet.com> and Carlos Escobar
Affiliation: Hospital Ramon y Cajal, Madrid, Spain and Hospital La Paz, Madrid, Spain
Role: Cardiologists

WHAT’S NEW
Last assessed as up-to-date: 1 October 2011.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 September 2012</td>
<td>Feedback has been incorporated</td>
<td>Comment: Should mild hypertension be treated?</td>
</tr>
</tbody>
</table>

HISTORY
Review first published: Issue 8, 2012
CONTRIBUTIONS OF AUTHORS

FG provided the data from the INDANA database for the specific population of interest. JMW, DD, FG were responsible for deciding trials to be included. DD and JMWM were responsible for data entry and DD wrote the initial draft. DKC suggested the topic for the review and edited the manuscript. All authors were responsible for interpreting the data and reviewing the final draft.

DECLARATIONS OF INTEREST

None known.

SOURCES OF SUPPORT

Internal sources
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada.
- Clinical Pharmacology Department, Hospices Civils de Lyon, France.
- UMR5558, CNRS, France.
- Claude Bernard University Lyon I, France.

External sources
- CIHR Grant to the Hypertension Review Group, Canada.
- British Columbia Ministry of Health Grant to the Therapeutics Initiative, Canada.

INDEX TERMS

Medical Subject Headings (MeSH)
Antihypertensive Agents [adverse effects; "therapeutic use"]; Blood Pressure [drug effects]; Coronary Disease [prevention & control]; Hypertension [*drug therapy; mortality]; Medication Adherence [statistics & numerical data]; Randomized Controlled Trials as Topic; Stroke [prevention & control]

MeSH check words
Adult; Humans